A SUMMARY OF MEASURED DELAYED # NEUTRON GROUP PARAMETERS # GREGORY D. SPRIGGS AND JOANN M. CAMPBELL Los Alamos National Laboratory, MS F664, Los Alamos, NM 87545-0001 **Abstract** -The experimentally-measured delayed neutron parameters for 20 different fissionable isotopes are summarized. The decay curves measured for each isotope are compared as a function of the incident neutron energy inducing the fissions. Based on these comparisons, it is concluded that the results are quite wide spread and that further experimental work should be performed to clearly identify the most accurate sets of delayed neutron parameters for use in reactor applications. # **INTRODUCTION** The reactivity of a reactor system is an inferred quantity. That is to say, it is not a primary quantity that can be directly measured. Instead, reactivity is always inferred from the measurement of some other quantity, such as an asymptotic period, or the alpha obtained during a Rossi-alpha measurement. In the case of a period measurement, the reactivity is inferred from the inhour equation in which the experimenter assumes a set of delayed neutron parameters and a neutron generation time. When determined in this fashion, the accuracy of the inferred reactivity is highly dependent on the accuracy and/or applicability of the assumed set of delayed neutron parameters used in the inhour equation. There have been several in-pile techniques that have been developed over the years to test the accuracy of a given set of delayed neutron parameters. One of the earliest techniques was developed by Hansen (1951). In this technique, a series of small, equal reactivity additions are sequentially introduced into a reactor system. At each new reactivity configuration, the corresponding asymptotic period is measured. The reactivity inferred from the inhour equation is then calculated using an assumed set of delayed neutron parameters. If the delayed neutron parameters are applicable to that system, then the reactivity should theoretically increase in a linear fashion with each additional reactivity addition. For example, if each reactivity perturbation is \$0.05, then the reactor should be \$0.05 supercritical after the first perturbation, \$0.10 after the second perturbation, \$0.15 after third perturbation, etc. Hansen performed this technique on the Topsy reactor, which is a tuballoy-tamped oralloy sphere, in order to test the accuracy/applicability of the delayed neutron parameters measured by Hughes et al. (1948), and de Hoffman et al (1948). He found that Hughes' delayed neutron set predicted a linear behavior up to about \$0.50, whereas de Hoffman's delayed neutron set was only linear through approximately \$0.15. Hence, Hansen concluded that Hughes' delayed neutron parameters were more applicable for Topsy than those of de Hoffman, but were not perfect. Hughes's set began to show significant non-linearity above \$0.50, indicating that the short-lived delayed neutron groups were not adequately characterized. There is also new experimental evidence that suggests that reactivities inferred from the inhour equation using the currently accepted 6-group delayed neutron parameters of Keepin et al. (1957) might be biased by 3 to 4% in uranium systems. One example of this experimental evidence was obtained from an experiment performed on the University of Arizona's TRIGA reactor (Spriggs and Doane, 1993). In this experiment, the initial inverse periods, ω , corresponding to a series of superprompt-critical bursts were measured using lownoise fission chambers. It is well known that in small, tightly-coupled systems, ω varies as a linear function of reactivity, $\rho_{\$}$. That is, $$\omega = \frac{\beta}{\Lambda} (\rho_{\$} - 1) \quad \text{for } \rho_{\$} > \$1. \tag{1}$$ where $\rho_{\$}$ is the system reactivity (in dollars), ω is the asymptotic inverse period, Λ is the neutron generation time, and β is the effective delayed neutron fraction. Equation (1), of course, intersects the reactivity axis at \$1. However, as noted in the aforementioned experiment, when the measured inverse periods were plotted as a function of the *indicated* reactivity worth of the burst rod (which was calibrated using positive periods), the curve did not intersect the reactivity axis at \$1. It was postulated that this deviation occurred because the burst rod was calibrated using an inappropriate set of delayed neutron parameters. To demonstrate this effect, the burst rod was re-calibrated using three different sets of delayed neutron parameters. The resulting burst rod calibrations for these three different sets of parameters are shown in Fig. 1. As noted from Fig. 2, when ω was plotted as a function of the indicated reactivity worth using each of three burst rod calibrations, the intercept changed significantly. Using Keepin's delayed neutron parameters, the intercept was found to occur at \$1.04; using the theoretical delayed neutron parameters found in ENDF/B-VI, the intercept occurred at \$0.93; and, using the in-pile measured delayed neutron parameters for this system (Spriggs, 1993), the intercept occurred at \$1.01. These results suggest that Keepin's 6-group delayed neutron parameters overestimated reactivity for this system by approximately 4%, ENDF/B-VI's theoretical delayed neutron parameters underestimated reactivity for this particular system by approximately 7%, and the measured in-pile delayed neutron parameters for this system overestimated the reactivity by approximately 1%. In another experiment performed on the University of Arizona's TRIGA reactor, a series of negative period measurements were performed. The inferred reactivities corresponding to these measurements were then computed using the same three sets of delayed neutron parameters mentioned above. These results indicated that there could be large differences for the inferred reactivity depending on which set of delayed neutron parameters was assumed in the inhour equation. For example, the reactivity inferred from a measured period of -85 s corresponded to -\$0.789 when Keepin's parameters were assumed, and -\$0.407 when the delayed neutron parameters in ENDF/B-VI were assumed. In comparison, the measured system reactivity corresponding to a -85 second period was found to be approximately -\$0.764 based on an in-pile measurement of the delayed neutron parameters. These results suggest that Keepin's parameters overestimated negative reactivities by 3.3%, whereas, the ENDF/B-VI parameters underestimated negative reactivities by as much as 47%. Although the discrepancies noted in the two experiments mentioned above seem to challenge the validity of the ENDF/B-VI recommended delayed neutron parameters and, to a lesser extent, Keepin's 6-group parameters, the cumulative experimental evidence found in the literature is not yet sufficient to justify abandoning either model. Rather, these two experiments merely suggest that we need to re-examine our cur- Fig. 1. University of Arizona's burst rod calibration curve assuming three different sets of delayed neutron parameters. The burst rod was calibrated in an incremental fashion using the Shim and Regulating rods to return the system to delayed critical after the reactivity worth of each section of the burst rod was inferred from a positive period measurement. (Data was not taken for rod positions greater than 10 inches since the burst rod is mechanically blocked at 10 inches to prevent inadvertent bursts greater than \$2.50—the maximum allowable burst size for this system.) rent delayed neutron data base and perform new experiments specifically designed to test the accuracy of that data base. Hopefully, this re-examination will result in an improved delayed neutron model that can predict a more accurate reactivity scale.^a In April 1997, an international workshop on delayed neutrons was held at the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia. The workshop was sponsored by the Nuclear Energy Agency's (NEA) working party on delayed neutrons (WPEC/SG6). The primary intent of this workshop was to review the current status of delayed neutron data and to propose new programs to improve these data for applications in reactor physics. As part of this international effort, these two authors were asked to perform a literature survey of measured delayed neutron group parameters to ascertain the extent of our data base. ^{a.} Throughout the remainder of this work, we shall refer to the relationship between period (or inverse period) and reactivity as the *reactivity scale*. This relationship is highly dependent on the value of the delayed neutron parameters assumed in the inhour equation and is very important when measuring reactivity in operating systems. Fig. 2. Initial inverse period for a series of superprompt critical excursions vs. the indicated reactivity of a burst rod that has been calibrated by the period method assuming three different sets of delayed neutron parameters. ### LITERATURE SURVEY During our literature survey, we identified numerous articles on delayed neutron experiments. These experiments are listed in Table I. Several of these articles are of historical interest (1 through 5), and several review articles on delayed neutrons have been published during the past 50 years (6 through 16). To date, we have also identified 245 individual sets of delayed-neutron group parameters for 20 different fissionable isotopes (17 through 101). The articles from which these parameters were obtained are listed in chronological order in the Reference section of this report in order to maintain a better historical perspective of the work done in this area. For purposes of dividing the various experimental results into categories characterized by the energy of the incident neutrons inducing the fission, we have defined four energy regimes—thermal, fast, transitional, and high. The *thermal* regime
is $E < 10^{-6}$ MeV; the *fast* regime is $10^{-6} < E < 5$ MeV; the *transitional* regime 5 < E < 13 MeV; and the *high* regime is E > 13 MeV. These regimes are based on the energies at which the second-chance fission and third-chance fission occur (see Fig. 3 and Fig. 4). Table I. Bibliography of Delayed Neutron Experiments | No. | Reference | |-----|--| | 1 | R. B. ROBERTS, R. C. MEYER, and P. WANG, "Further Observations on the Splitting of Uranium and Thorium," <i>Physical Review</i> , 55 , 510 (1939). | | 2 | R. B. ROBERTS, L. R. HAFSTAD, R. C. MEYER, and P. WANG, "The Delayed Neutron Emission which Accompanies Fission of Uranium and Thorium," <i>Physical Review</i> , 55 , 664 (1939). | | 3 | E. T. BOOTH, J. R. DUNNING, and F. G. SLACK, "Delayed Neutron Emission from Uranium," <i>Physical Review</i> , 55 , 876 (1939). | | 4 | D. F. GIBBS and G. P. THOMSON, "Possible Delay in the Emission of Neutrons from Uranium," <i>Nature</i> , 144 , 202 (1939). | | 5 | K. J. BROSTROM, J. KOCH, and T. LAURITSEN, "Delayed Neutron Emission accompanying Uranium Fission," <i>Nature</i> , 144 , 830 (1939). | | 6 | G. R. KEEPIN, "Delayed Neutrons—A Review as of October 1955," Los Alamos Scientific Laboratory report LA-1970, Los Alamos, NM (October 1955). | | 7 | G. R. KEEPIN, "Delayed Neutrons," in Chapter 7 of <u>Prog. Nucl. Energy</u> , Series 1, Physics and Mathematics, Vol. I (New York: McGraw-Hill Book Co., Inc., 1956). | | 8 | G. R. KEEPIN and T. F. WIMETT, "Delayed Neutrons," <i>Proc. International Conf. on the Peaceful Uses of Atomic Energy</i> , United Nations, NY, Vol. IV, P/831, 162 (1956). | | 9 | A. GRALEWSKA, "Delayed Neutrons: An Annotated Bibliography," LS-97, Israel Atomic Energy Commission (May 1961). | | 10 | S. AMIEL, "Delayed Neutrons and Photoneutrons from Fission Products," <i>Proc. Symposium on Physics and Chemistry of Fission</i> , Salzburg, Germany, Vol. II, p. 171 (March 1962)—published by International Atomic Energy Agency, Vienna (1965). | | 11 | E. K. HYDE, "Delayed Neutrons in Fission," in Chapter 8 of Vol III, <u>The Nuclear Properties of the Heavy Elements</u> , Dover Publications, Inc., NY, (1971). | | 12 | L. TOMLINSON, "Delayed Neutrons from Fission—A Compilation and Evaluation of Experimental Data," Atomic Energy Research Establishment report AERE-R.6993, Harwell, UKAEA (Feb. 1972). | | 13 | S. AMIEL, "Status of Delayed Neutron Data," <i>Proc. Symposium on Fission Product Nuclear Data</i> , Bologna, Italy, IAEA-169 (Vol. II), 33-52 (November 26-30, 1973)—published by International Atomic Energy Agency, Vienna, (1974). | | 14 | S. A. COX, "Delayed Neutron Data—Review and Evaluation," Argonne National Laboratory Report ANL/NDM-5, Argonne, IL (April 1974). | | 15 | R. J. TUTTLE, "Delayed-Neutron Data for Reactor-Physics Analysis," Nucl. Sci. Eng., 56, 37 (1975). | | 16 | R. J. TUTTLE, "Delayed-Neutron Yields in Nuclear Fission," <i>Proc. Consultant's Meeting on Delayed Neutron Properties</i> , International Atomic Energy Agency, Vienna (March 26-30, 1979). | Table I. Bibliography of Delayed Neutron Experiments | No. | Reference | |-----|---| | 17 | A. H. SNELL, A. V. NEDZEL, and H. W. IBSER, Metallurgical Laboratory report C-81 (U), Univ. of Chicago (May 15, 1942); as referenced in H. D. Smyth, <i>Atomic Energy For Military Purposes</i> , Princeton University Press, Princeton, NJ (1945), Appendix III. | | 18 | J. E. BROLLEY, J. S. LEVINGER, M. B. SAMPSON, and R. G. WILKINSON, "Delayed Neutrons from Thorium," Metallurgical Laboratory report CP-787 (U), Univ. of Chicago (July 16, 1943). | | 19 | A. H. SNELL, M. B. SAMPSON, and J. S. LEVINGER, "Further Work on the Possible Use of the Delayed Neutrons for Detection of Coating Failures in the W Pile," Metallurgical Laboratory report CP-1014 (U), Univ. of Chicago (Oct. 28, 1943). | | 20 | R. R. WILSON and B. B. SUTTON, "Delayed Neutrons from 49 (²³⁹ Pu)," Los Alamos Scientific Laboratory report LA-76 (U), Los Alamos, NM (May 8, 1944). | | 21 | W. C. REDMAN and D. SAXON, "Delayed Neutrons in Plutonium and Uranium Fission," Argonne Laboratory report CK-2318 (U), Chicago, IL (November 4, 1944). | | 22 | B. T. FELD and F. de HOFFMANN, "Delayed Neutrons from 49 (²³⁹ Pu)," Los Alamos Scientific Laboratory report LA-231 (U), Los Alamos, NM (February 27, 1945). | | 23 | F. de HOFFMANN, B. R. FELD, O. R. FRISCH, J. W. OSBORN, and P. R. STEIN, "Delayed Neutrons from 25 (²³⁵ U) After Short Irradiation," Los Alamos Scientific Laboratory report LA-252 (U), Los Alamos, NM (April 6, 1945). | | 24 | D. J. HUGHES, J. DABBS, and A. CAHN, "Delayed Neutrons from Fission of 25 (²³⁵ U)," Argonne Laboratory report CP-3094 (U), Univ. of Chicago (August 27, 1945). | | 25 | A. CAHN, J. W. T. DABBS, and D. J. HUGHES, "Delayed Neutrons from Fission of 23 (²³³ U)," Argonne Laboratory report CP-3147, Univ. of Chicago (October 2, 1945). | | 26 | R. PERRY, C. L. BAILEY, S. L. FRIEDMAN, D. H. FRISCH, and H. T. RICHARDS, "Absolute Yield of Delayed Neutrons from Plutonium Fission, with Fast-Neutron Excitation," Los Alamos Scientific Laboratory report LA-539 (U), Los Alamos, NM (March 12, 1946). | | 27 | A. H. SNELL, J. S. LEVINGER, R. G. WILKINSON, E. P. MEINERS, M. B. SAMPSON, "Chemical Isolation of Two of the Delayed Neutron Activities; Resolution of Delayed Neutron Periods," <i>Physical Review</i> , 70 , 111 (1946). | | 28 | R. R. WILSON and R. B. SUTTON, "Delayed Neutrons from ²³⁹ PU," <i>Physical Review</i> , 71 , No. 3, 560 (March 22, 1947). | | 29 | A. H. SNELL, V. A. NEDZEL, H. W. IBSER, J. S. LEVINGER, R. G. WILKINSON, and M. B. SAMPSON, "Studies of the Delayed Neutrons", <i>Physical Review</i> , 72 , No. 7, 541 (Oct. 1, 1947). | | 30 | F. de HOFFMANN and B. T. FELD, "Delayed Neutrons from ²³⁹ Pu," <i>Physical Review</i> , 72 , No. 7, 567 (1947). | | 31 | W. C. REDMAN and D. SAXON, "Delayed Neutrons in Plutonium and Uranium Fission," <i>Physical Review</i> , 72 , No. 7, 570 (October 1, 1947). | Table I. Bibliography of Delayed Neutron Experiments | No. | Reference | |-----|---| | 32 | D. J. HUGHES, J. DABBS, A. CAHN, and D. HALL, "Delayed Neutrons from Fission of ²³⁵ U," <i>Physical Review</i> , 73 , No. 2, 111 (January 15, 1948). | | 33 | F. de HOFFMANN, B. T. FELD, and P. R. STEIN, "Delayed Neutrons from ²³⁵ U After Short Irradiation," <i>Physical Review</i> , 74 , No. 10, 1330 (November 15, 1948). | | 34 | L. G. CREVELING, J. R. HOOD, and M. L. POOL, "Delayed Neutrons from Thorium," <i>Physical Review</i> , 76 , No. 7, 946 (October 1, 1949). | | 35 | K. H. SUN, R. A. CHARPIE, F. A. PECJAK, B. JENNINGS, J. F. NECHAJ, and A. J. ALLEN, "Delayed Neutrons from ²³⁸ U and ²³² Th Fission," <i>Physical Review</i> , 79 , No. 1, 3 (July 1, 1950); originally reported in Westinghouse Research Laboratories report NP-1464. | | 36 | G. R. KEEPIN and T. F. WIMETT, "Delayed Neutrons," <i>Proc.</i> 1 st International Conf. on the Peaceful Uses of Atomic Energy, United Nations, NY, Vol. IV, P/831, 162 (August 8-20, 1955). | | 37 | S. V. GIRSHFELD, "The Study of Delayed Neutrons Emitted by Uranium-233 as a Result of Irradiation by Thermal Neutrons," <i>Proc. 1st International Conf. on the Peaceful Uses of Atomic Energy</i> , United Nations, NY, Vol. IV, P/648, 171 (August 8-20, 1955). | | 38 | H. ROSE and R. D. SMITH, "Delayed Neutron Investigations with the ZEPHYR Fast Reactor, Part II—
The Delayed Neutrons Arising from Fast Fission in ²³⁵ U, ²³⁸ U, ²³⁸ U, ²³⁹ Pu, and ²³² Th," <i>J. Nucl. Energy</i> , 4 , 133 (1957). | | 39 | G. R. KEEPIN, T. F. WIMETT, and R. K. ZEIGLER, "Delayed Neutrons from Fissionable Isotopes of Uranium, Plutonium, and Thorium," <i>Physical Review</i> , 107 , 4, 1044 (Aug. 15, 1957). | | 40 | A. SMITH, P. FIELDS, A. FRIEDMAN, S. A. COX, and R. SJOBLOM, "An Experimental Study of Fission in the Actinide Elements," <i>Proc. 2nd International Conf. on the Peaceful Uses of Atomic Energy</i> , United Nations, NY, 15 , P/690, 392 (1958). | | 41 | B. P. MAKSYUTENKO, "Relative Yields of Delayed Neutrons in Fission of ²³⁸ U, ²³⁵ U and ²³² Th by Fast Neutrons," <i>J. Exptl. Theoret. Phys.</i> (USSR) 35 , 815 (September 1, 1958). | | 42 | S. A. COX, P. FIELDS, A. FRIEDMAN, R. SJOBLOM, and A. SMITH, "Delayed Neutrons from the Spontaneous Fission of ²⁵² Cf," <i>Physical Review</i> , 112 , No. 3, 960 (November 1, 1958). | | 43 | S. A. COX, "Delayed-Neutron Studies from the Thermal-Neutron-Induced Fission of ²⁴¹ Pu," <i>Physical Review</i> , 123 , No. 5, 1735 (September 1, 1961). | | 44 | B. P. MAKSYUTENKO, "Delayed Neutrons from ²³⁹ Pu," <i>Iadernaia Fizika</i> (English Translation), 15 , No. 2, 848 (August 1, 1963). | | 45 | B. P. MAKSYUTENKO, "Delayed Neutrons from Fission of ²³³ U by 15-MeV Neutrons," <i>Iadernaia Fizika</i> (English Translation), 15 , No. 4, 1042 (August 1, 1963). | | 46 | O. J. HAHN, "Measurement of Delayed Neutrons," Dissertation, Princeton University (1964). | Table I. Bibliography of Delayed Neutron Experiments | No. | Reference | |-----
--| | 47 | G. HERMANN, J. FIEDLER, G. BENEDICT, W. ECKHARDT, G. LUTHARDT, P. PATZELT, and H. D. SCHUSSLER, "Comparison of Observed Delayed-Neutron Abundances with Calculated Fission Yields of Neutron Precursors," <i>Proc. Sympos. on Physics and Chemistry of Fission</i> , Int. Atomic Energy Agency, Vienna, Vol 2., 197 (March 22-26, 1965). | | 48 | B. P. MAKSYUTENKO et al., "Variation of Relative Yields of Delayed Neutrons," <i>Proc. Sympos. on Physics and Chemistry of Fission</i> , Int. Atomic Energy Agency, Vienna, Vol 2., 215 (March 22-26, 1965). | | 49 | B. P. MAKSYUTENKO, "Relative Yields of Delayed Neutrons in the Fission of ²³⁵ U and ²³⁸ U," <i>Iadernaia Fizika</i> (English Translation), 19 , No. 1, 910 (July 1, 1965). | | 50 | B. P. MAKSYUTENKO, "Variation of Cumulative Yields of Fragments of Precursors of Delayed Neutrons of ²³² Th," Fiziko-Energeticheskii Institut, FEI-195 (1965). | | 51 | M. BUCKO, "Investigation of Delayed Neutrons Arising from the Fission of ²³⁸ U Nuclei by 14.7-MeV Neutrons," <i>Soviet At. Energy</i> , 20 , 187 (1966); translated from <i>Atom. Energy</i> , 20 , 153 (February 1, 1966). | | 52 | B. P. MAKSYUTENKO, V. K. PYSHIN, and M. Z. TARASKO, "The Reaction (<i>n</i> , <i>nf</i>) and Yields of Delayed Neutrons from ²³² Th," <i>Soviet J. Nucl. Physics</i> (English Translation), 5 , No. 3, 375 (September 1, 1967). | | 53 | G. HERMANN, "Recent Work on Delayed Fission Neutrons at the University of Mainz," <i>Proc. of a Panel on Delayed Fission Neutrons</i> , Int. Atomic Energy Agency, Vienna, 147 (April 24-27, 1967). | | 54 | B. P. MAKSYUTENKO, "Delayed Neutrons from Uranium Isotopes, Thorium-232 and Plutonium-239," <i>Proc. of a Panel on Delayed Fission Neutrons</i> , Int. Atomic Energy Agency, Vienna, 191 (April 24-27, 1967). | | 55 | B. P. MAKSYUTENKO et al., "Delayed Neutrons from Nuclear Fission by Neutrons with Energies of 15 to 21 MeV," <i>Proc. of a Panel on Delayed Fission Neutrons</i> , Int. Atomic Energy Agency, Vienna, 203 (April 24-27, 1967). | | 56 | B. P. MAKSYUTENKO, "Relative Delayed Neutron Yields in Fission of ²³³ U by 5.5–7.3 MeV Neutrons," <i>Soviet J. Nucl. Physics</i> (English Translation), 6 , No. 1, 16 (January, 1968). | | 57 | H. SCHUESSLER, W. GRIMM, and G. HERRMANN, "Neutron Yields and Neutron Emission Probability P _n of the Delayed Neutron Emitters in the Fission of ²³ 5U by Thermal Neutrons," CONF-680461-6, <i>Proc. of Professional Commission on Nuclear Physics</i> , Bad Neuenahr, Germany, (April 6, 1968). | | 58 | B. P. MAKSYUTENKO, "Fractional Yields of Delayed Neutron Groups Following Fission of ²³⁸ U by 18-21 MeV Neutrons," <i>Soviet J. Nucl. Physics</i> (English Translation), 7 , No. 2, 189 (August, 1968). | | 59 | S. A. COX and E. E. D. WHITING, "Energy Dependence of the Delayed Neutron Yield from Neutron Induced Fission of ²³² Th, ²³⁵ U, and ²³⁸ U," Reactor Physics Division Annual Report, ANL-7410, 27-30 (July 1, 1967 to June 30, 1968). | | 60 | M. HUIZINGA, "Short-Lived Delayed Neutron and Photoneutron Groups from Fission Fragments of ²³⁹ Pu in Light and Heavy Water," Dissertation, Virginia Polytechnic Institute, Blacksburg, VPI (November 1968). | Table I. Bibliography of Delayed Neutron Experiments | No. | Reference | |-----|---| | 61 | E. T. CHULICK, P. L. REEDER, E. EICHLER, and C. E. BEMIS Jr., "Redetermination of Delayed Neutrons from ²⁵² Cf," <i>Radiochimica Acta</i> , 12 , No. 3, 164 (1969). | | 62 | A. NOTEA, "Delayed Neutrons from Thermal and 14 MeV Neutron Fission of Uranium and Thorium," Research Laboratories Annual Report—January through December 1968, IA-1190, Israel AEC, 95 (1969). | | 63 | G. E. RAMBO, "Delayed Neutron Groups from ²³⁵ U and ²³³ U and Short-Lived Delayed Photoneutrons Groups from ²³⁵ U and ²³³ U in D ₂ 0," Dissertation, Virginia Polytechnic Institute, Blacksburg, VPI (May 1969). | | 64 | R. J. ONEGA, G. E. RAMBO, M. HUIZINGA, and A. ROBESON, "Delayed-Neutron Half-Lives for ²³³ U, ²³⁵ U, and ²³⁹ Pu," <i>Trans. Am. Nucl. Soc.</i> , 12 , 1, 289 (June 5-19, 1969). | | 65 | R. H. AUGUSTON, L. V. EAST, and H. O. MENLOVE, "Delayed Neutron Abundances and Half-Lives for 14.9-MeV Fission," excerpt from Los Alamos National Laboratory Program Status Report LA-4315-MS (July-September, 1969), p. 18. | | 66 | R. H. AUGUSTON, L. V. EAST, and H. O. MENLOVE, "Delayed Neutron Abundances and Half-Lives for 14.7-MeV Fission," excerpt from Los Alamos National Laboratory Program Status Report LA-4368-MS (October-December, 1969), p. 12. | | 67 | L. V. EAST, R. H. AUGUSTON, and H. O. MENLOVE, "Delayed Neutron Abundances and Half-Lives for 14.7-MeV Fission," excerpt from Los Alamos National Laboratory Program Status Report LA-4605-MS (September-December, 1970), p. 15. | | 68 | L. V. EAST, R. H. AUGUSTSON, H. O. MENLOVE, and C. F. MASTERS, "Delayed-Neutron Abundances and Half-Lives from 14.7-MeV Fission," <i>Trans Amer. Nucl. Soc.</i> , 13 , 760 (November, 1970). | | 69 | G. R. KEEPIN, H. O. MENLOVE, M. M. THORPE, R. H. AUGUSTON, C. N. HENRY, D. B. SMITH, T. D. REILLY, "Application Areas and Results of Non-Destructive Assay Measurments," <i>Proc. Sym. on Progress in Safeguards Techniques</i> , IAEA Conf-700701, Karlsruhe, Germany (July 6-10, 1970). | | 70 | N. G. CHRYSOCHOIDES, D. C. PERRICOS, C. C. ZIKIDES, "Relative Delayed Neutron Group Yields from ²³¹ Pa Fission with Fission Neutrons," <i>J. Nucl. Energy</i> , 24 , 157 (1970). | | 71 | M. G. BROWN, S. J. LYLE, and E. B. M. MARTIN, "Delayed Neutron Yields from 14.8 MeV Neutron Induced Fission of ²³⁸ U, ²³² Th, and ²³¹ Pa," <i>Radiochimica Acta</i> , 15 , No. 3, 109 (1971). | | 72 | B. P. MAKSYUTENKO, R. RAMAZANOV, and M. Z. TARASKO, "Variation of Fragment Yield Ratios of Delayed Neutron Precursors in Fission of ²³⁹ Pu and ²³³ U by 18-21 MeV Neutrons," <i>Sov. J. Nucl. Phys.</i> , 13 , No. 2, 163 (August, 1971). | | 73 | E. T. CHULICK, P. L. REEDER, C. E. BEMIS, and E. EICHLER, "Analysis of Delayed Neutron Yields from ²⁵² Cf," <i>Radiochimica Acta</i> , 16 , No. 1, 8 (1971). | | 74 | G. R. KEEPIN, "Physics of Delayed Neutrons—Recent Experimental Results," <i>Nucl. Technology</i> , 13 , 53 (April 1972). | | 75 | G. BENEDICT, G. LUTHARDT, and G. HERMANN, "Delayed-Neutron Yields from Fission of ²³⁸ U and ²³² Th by 14.8-MeV Neutrons," <i>Radiochimica Acta</i> , 17 , No. 1, 61 (1972). | Table I. Bibliography of Delayed Neutron Experiments | No. | Reference | |-----|--| | 76 | Von HD. SCHUSSLER and G. HERMANN, "Main Components of the Delayed-Neutron Precursors in the Fission of ²³⁵ U by Thermal Neutrons," <i>Radiochimica Acta</i> , 18 , No. 3, 123 (1972). | | 77 | J. N. ANOUSSIS, D. C. PERRICOS, N. G. CHRYSOCHOIDES, and C. A. MITSONIAS, "Relative Abundances for Six Delayed Neutron Groups from Reactor Neutron-Induced Fission of ²³¹ Pa," <i>Radiochimica Acta</i> , 20 , 118 (1973). | | 78 | V. SANGIUST, M. TERRANI, and S. TERRANI, "Yields of the First and Second Delayed Neutron Groups in Neutron Fission of ²³⁷ Np and ²⁴¹ Am," <i>Energia Nucleare</i> , 20 , No. 2, 111 (1973). | | 79 | B. P. MAKSYUTENKO, Y. F. BALASKSHEV, and G. I. VOLKOVA, "Relative Yields of Delayed Neutrons in Fission of ²³⁷ Np by 0.4–1.2 MeV Neutrons," <i>Sov. J. Nucl Phys.</i> , 19 , No. 4, 380 (October, 1974). | | 80 | B. P. MAKSYUTENKO, Y. F. BALASKSHEV, and G. I. VOLKOVA, "Relative Yields of Delayed Neutrons from ²³⁸ U Fission by 3.9-5.1 MeV Neutrons," (translated from Russian) Report INDC (CCP)-42/U, 7 (1974). | | 81 | C. B. BESANT, P. J. CHALLEN, M. H. McTAGGART, P. TAVOULARIDIS, J. G. WILLIAMS, "Absolute Yields and Group Constants of Delayed Neutrons in Fast Fission of ²³⁵ U, ²³⁸ U, and ²³⁹ Pu," <i>J. Br. Nucl. Energy Soc.</i> , 16 , 161 (1977). | | 82 | R. W. WALDO, R. A. KARAM, R. A. MEYER, "Delayed Neutron Yields: Time Dependent Measurements and a Predictive Model," Physical Review C, 23, No. 3, 1113 (March 1981). | | 83 | R. W. WALDO, and R. A. KARAM, "Measured Delayed Neutron Yields," <i>Trans. Amer. Nucl. Soc.</i> , 39 , 879 (1981). | | 84 | G. BENEDETTI, A. CESANA, V. SANGIUST, and M. TERRANI, "Delayed Neutron Yields from Fission of Uranium-233, Neptunium-237, Plutonium-238, -240, -241, and Americium-241", <i>Nucl. Sci. Eng.</i> , 80 , 379 (1982). | | 85 | S. SYNETOS, and J. G. WILLIAMS, "Delayed Neutron Yield and Decay Constants for Thermal Neutron-Induced Fission of ²³⁵ U," <i>Nucl. Energy</i> , 22 , No. 4, 267 (Aug. 1983). | | 86 | A. N. GUDKOV, A. B. KOLDOBSKII, S. V. KRIVASHEEV, N. A. LEBEDEV, and V. A. PCHELIN, "Yields of Delayed-Neutron Groups in Thermal-Neutron Fission of ²²⁹ Th," <i>Sov. J. Nucl. Phys.</i> , 49 , No. 6, 960 (1989). | | 87 | A. N. GUDKOV et al., "Measurement of the Delayed-Neutron Yields in the Fission of ²³³ U, ²³⁶ U, ²³⁷ Np, ²⁴⁰ Pu, and ²⁴¹ Pu by Neutrons from the Spectrum of a Fast Reactor," <i>At. Energ.</i> , 66 , No. 2, 100 (1989). | | 88 | A. N. GUDKOV, S. V. KRIVASHEEV, A. B. KOLDOBSKII, E. Y. BOBKOV, Y. F. KOLEGANOV, A. V. ZVONAREV, and V.
B. PAVLOVICH, "Determining Delayed-Neutron Group Yields for Fast Neutron ²³⁵ U and ²⁴¹ Am," <i>Sov. Atomic Energy</i> , 67 , No. 3, 702 (1989). | | 89 | H. H. SALEH, T. A. PARISH, and S. RAMAN, "Measurements of Delayed-Neutron Emission from ²³⁷ Np, ²⁴¹ Am, and ²⁴³ Am," <i>Trans. Amer. Nucl. Soc.</i> , 72 , 379 (1995). | Table I. Bibliography of Delayed Neutron Experiments | No. | Reference | |-----|--| | 90 | W. S. CHARLTON, T. A. PARISH, S. RAMAN, N. SHINOHARA, and M. ANDOH, "Delayed Neutron Emission Measurements from Fast Fission of ²³⁵ U and ²³⁷ Np," <i>Proc. Int. Conf. on the Physics of Reactors</i> , Japan Atomic Energy Research Institute, Mito, Japan, F-11, (September 16-20, 1996). | | 91 | H. H. SALEH, T. A. PARISH, S. RAMAN, and N. SHINOHARA, "Measurements of Delayed-Neutron Decay Constants and Fission Yields from ²³⁵ U, ²³⁷ Np, ²⁴¹ Am, and ²⁴³ Am," <i>Nucl. Sci. Eng.</i> , 125 , 51 (1997). | | 92 | V. M. PIKSAIKIN, Yu. F. BALAKSHEV, S. G. ISAEV, L. E. KAZAKOV et al., "Measurements of Periods, Relative Abundances, and Absolute Total Yields of Delayed Neutrons from Fast Neutron Induced Fission of ²³⁵ U and ²³⁷ Np," <i>Proc. Inter. Conf. on Nucl. Data for Sci. and Tech.</i> , Italian Physical Society, Trieste, Italy, 490 (May 19-24, 1997). | | 93 | W. S. CHARLTON, T. A. PARISH, S. RAMAN, N. SHINOHARA, AND M. ANDOH, "Delayed Neutron Emission Measurements for Fast Fission of ²³⁵ U, ²³⁷ Np, and ²⁴³ Am," <i>Proc. Inter. Conf. on Nucl. Data for Sci. and Tech.</i> , Italian Physical Society, Trieste, Italy, 491 (May 19-24, 1997). | | 94 | V. M. PIKSAIKIN, private communication (October 2 and 10, 1997). | | 95 | D. LOAIZA, G. BRUNSON, and R. SANCHEZ, "Measurement of Delayed-Neutron Parameters for ²³⁵ U," <i>Trans. Amer. Nucl. Soc.</i> , 76 , 361 (1997). | | 96 | D. LOAIZA, "Measurement of Delayed-Neutron Parameters for ²³⁵ U and ²³⁷ Np," Ph.D. Dissertation, University of New Mexico, Albuquerque, NM (1997). | | 97 | V. M. PIKSAIKIN, private communication (March 30, 1998). | | 98 | W. S. CHARLTON, "Delayed Neutron Emission Measurements from Fast Fission of Actinide Waste Isotopes," Master's Thesis, Texas A&M University (August, 1998). | | 99 | MARK ADRIAN KELLETT, "Measurement of the Absolute Yield of Delayed Neutrons from the Fast Neutron Induced Fission of Uranium 235 and 238," Dissertation, The Univ. of Birmingham, England (March, 1998). | | 100 | WILLIAM S. CHARLTON, THEODORE A. PARISH, and SUBRAMANIAN RAMAN, "Preliminary Pulsing Experiments to Measure Delayed Neutron Emission Parameters," <i>Proc. Inter. Conf. on Nucl. Data for Science and Technology</i> , Long Island, NY, Vol. 1, 190 (Oct. 5-9, 1998). | | 101 | V. M. PIKSAIKIN, Yu. F. BALAKSHEV, S. G. ISAEV, L. E. KAZAKOV et al., "Measurements of Energy Dependence of Relative Abundances and Decay Half-Lives of Their Precursors from Fast Neutron Induced Fission of ²³⁷ Np," (to be published in Russian "Atomic Energy" Journal). | Fig. 3. Fission Cross Section for ²³⁵U. Fig. 4. Delayed Neutron Yield as a function of incident neutron energy. When reviewing the literature, we tried to categorize each delayed neutron set in accordance to the energy of the incident neutron quoted by the experimenters (i.e., thermal, fast, high, etc.). However, in many cases, the experimenters did not state the energy of the incident neutron. When this occurred, we had to guess the incident neutron energy based on their description of the experiment, if any was provided. In most cases, it was felt that the incident neutron spectrum must have been, in all likelihood, a mixture of both thermal and fast fluxes and, as such, should not be categorized as either a thermal or a fast delayed neutron set. Nevertheless, sticking with the traditional thermal/fast categories for reactor physics application, we guessed where most of the fissions must have occurred using the energy-dependent fission cross section for each isotope as a guide. Accordingly, we categorized many of the delayed neutron sets as either thermal or fast despite the fact that they are probably best characterized as a mixed spectrum. We apologize in advance for any error in judgement. #### **RESULTS** Table II shows the distribution of measured delayed neutron group parameters for the 20 different isotopes reported in the literature as a function of the energy catagories defined above. Table III presents a brief summary of some of the pertinent information concerning the experimental conditions and the analysis techniques used to obtain the experimental results. In some cases, this information was not included in the original article. When omissions of this type occurred, we denoted this by placing a *question mark* in the appropriate column. In addition, we found references to several articles that have never been translated into English and, as such, could not be reviewed by these authors. A complete listing of the delayed neutron group parameters for these 245 sets can be found in Los Alamos National Laboratory report LA-UR-98-918 (web site URL: http://lib-www.lanl.gov/la-pubs/00393607.pdf). #### COMPARISON OF DECAY CURVES For comparison sake, we have plotted the delayed neutron decay curves for each of the isotopes that have been measured (see Fig. 5 through Fig. 42). As can be noted from these figures, there is considerable spread in the results. We speculate that there are several factors that have contributed to this spread. First, the experimental techniques used to performed the decay curve measurements have improved dramatically since the first measurements performed in 1945. The sample sizes of the fissionable isotopes are larger, and are of higher purity. In addition, the neutron sources used to induce the fissions are stronger, and with each new generation of detectors and detector counting systems, the detector sensitivity has greatly increased while the dependence on incident neutron energy has greatly decreased. This has allowed for the measurement of more detailed decay curves showing less statistical variations. And finally, with the advent of multi-channel scalars, better time resolution has been achieved during the measurements. Second, the analysis techniques used to analyze the decay curves have become more quantatitive with the advent of least-squares-fitting codes. Prior to the use of these codes, most of the decay curves were analyzed by graphical stripping techniques which can be somewhat subjective. And third, and perhaps most importantly, as more and more experiments were performed, it became readily apparent that short sample transfer times were absolutely essential in resolving the short-lived delayed neutron groups. In most modern measurements, samples transfer times of less than a second or so are usually obtained. However, during some of the earlier measurements, sample transfer times as high as 30 seconds were reported. This difference in sample transfer time can have a very dramatic impact on the final results. When ever the transfer time is relatively long (i.e., > 1.0 seconds), the short-lived delayed neutron groups (i.e., Groups 5 or 6 in the six-group model) cannot be resolved. Hence, the decay curves for those particular measurements show less of an initial drop and then decrease at a slower rate. Invariably, these curves are on the high side of the average curve. In contrast, the experiments in which the sample transfer times were very short (~0.1 seconds or less) had the best chance of observing the entire delayed neutron decay curve. Table II. Summary of Out-of-Pile Delayed Neutron Experiments | Isotope | Thermal
Spectrum | Fast
Spectrum ^a | Transitional
Energies ^b | High
Energies ^c | |---------|---------------------|-------------------------------|---------------------------------------|-------------------------------| | Th-229 | 1 | | | | | Th-232 | | 12 | 8 | 9 | | Pa-231 | | 2 | | 1 | | U-232 | 1 | | | | | U-233 | 6 | 4 | 6 | 11 | | U-235 | 16 | 22 | 7 | 8 | | U-236 | | 1 | | | | U-238 | | 16 | 11 | 23 | | Np-237 | | 29 | | | | Pu-238 | 1 | 1 | | | | Pu-239 | 6 | 6 | 5 | 10 | | Pu-240 | | 3 | | | | Pu-241 | 2 | 2 | | | | Pu-242 | | 1 | | 2 | | Am-241 | 2 | 2 | | | | Am-242m | 1 | | | | | Am-243 | | 3 | | | | Cm-245 | 1 | | | | | Cf-249 | 1 | | | | | Cf-252 | 2 ^d | | | | a. Thermal < E < 5 MeV b. 5 MeV < E < 13 MeV c. E > 13 MeV d. Spontoneous fission. Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |-------------------|-------------------------|------|---|---|--|----------------------|------------------|--------------------| | | | | | | | | | | | ²²⁹ Th | Gudkov et al. (1989) | 86 | 50.2 μg Th | IRT Reactor,
Russia | Thermal
Spectrum | ~1 - ? s | 5 | LSF | | | | | | | | | | | | ²³² Th | Brolley et al. (1943) | 18 | 11.3 Kg Th-Nitrate
U < 0.1% | Univ. Chicago
cyclotron:
Be-target | Fast
Spectrum | ~0.5 – ? s | 4 | Graphical | | ²³² Th | Cahn et al.
(1945) | 25 | ? | Argonne CP-3 reactor | Fast Component
of Reactor
Spectrum | 0.4 – ?s | 5 | Graphical | | ²³² Th | Creveling et al. (1949) | 34 | 10.53 gms ²³² Th metal | Ohio State Univ.
cyclotron— ⁷ Li(d,n) | Fast (max=24 MeV) | ? | 5 | Graphical | | ²³² Th | Sun et al.
(1950) | 35 | 4.5 Kg ²³² Th oxide | Univ. Pittsburgh
cyclotron—C, LiF,
B ₄ C targets | 14-29 MeV | ? – 500 s | 5 | Graphical | |
²³² Th | Rose & Smith (1957) | 38 | 43.9 gms Th
100% ²³² Th | ZEPHYR Reactor,
Harwell | Fast
Spectrum | ~1 – 300 s | 5 | Graphical | | ²³² Th | Keepin et al. (1957) | 39 | ~2 – 5 gms Th
100% ²³² Th | Godiva reactor,
LASL | Fast
Spectrum | 0.05 – 330 s | 6 | LSF | | ²³² Th | Maksyutenko
(1958) | 41 | ~180 gms Th | An accelerator—
heavy ice target | 2.4, 3.3, 15
MeV | ~0.25–360 s | 5 | LSF | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |-------------------|------------------------|--------|--|---|--|----------------------|------------------|--------------------| | ²³² Th | Hermann et al. (1965) | 47 | A few gms ²³² Th metal | An accelerator | 14 MeV | ? | 4 | ? | | ²³² Th | Maksyutenko
(1965) | 50 | ? | ? | 1.6, 1.9, 2.2, 2.6
MeV | ? | 5 | LSF | | ²³² Th | Maksyutenko
(1967) | 52, 54 | ? | Van de Graaff
generator
Zr-deuterium target | 5, 6, 6.2, 6.4,
6.6, 6.8, 7.25,
7.5, 7.75 MeV | ? | 5 | LSF | | ²³² Th | Hermann
(1967) | 53 | Several gms Th metal | An accelerator–
Be-D reaction | 14 MeV | 0.3 – 400 s | 6 | LSF | | ²³² Th | Maksyutenko
(1967) | 54 | ? | ? | 5.0, 6.0, 6.2, 6.4,
6.6, 6.8 7.25,
7.7, 7.75 MeV | ? | 5 | LSF | | ²³² Th | Cox & Whiting (1968) | 59 | ~45 gms Th | Van de Graaff,
Li(p,n) | 1.45, 1.50, 1.64
MeV | 0.2 – 400 s | 5 | LSF | | ²³² Th | Notea
(1969) | 62 | ? | An accelerator | 14 MeV | ? | 5 | ? | | ²³² Th | Brown et al. (1971) | 71 | ~8 gms Th metal powder | S.A.M.E.S.
neutron generator,
³ H(d,n) ⁴ He | 14.8 MeV | ? | 4 | ? | | ²³² Th | Benedict et al. (1972) | 75 | ? | ? | 14.8 MeV | ? | 6 | LSF | | ²³² Th | Waldo et al.
(1981) | 82, 83 | A few µg/mg of
chemically purified Th
>99.5% ²³² Th | Livermore Pool-Type,
Thermal
Reactor, LLNL | Fast Component
of Reactor
Spectrum | 0.3 – ? s | 5 | LSF | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |-------------------|--------------------------------|--------|--|---|--------------------------------|----------------------|------------------|--------------------| | | | | | | | | | | | ²³¹ Pa | Chrysochoides
et al. (1970) | 70 | 5 mg Pa oxide
in Cd container | Democritos Reactor,
Greece | Above Cd
Cutoff | 30 – 320 s | 3 | LSF | | ²³¹ Pa | Brown et al. (1971) | 71 | $7.25~\mathrm{gms~Pa_2O_5}$ | S.A.M.E.S.
neutron generator,
³ H(d,n) ⁴ He | 14.8 MeV | ? | 4 | ? | | ²³¹ Pa | Anousis et al. (1973) | 77 | A few mg Pa ₂ O ₅ in Cd container | Democritos Reactor,
Greece | Above Cd
Cutoff | 5 – 272 s | 6 | LSF | | | | | | | | | | | | ²³² U | Waldo et al.
(1981) | 82, 83 | A few µg/mg of isotopically purified U 99.99% ²³² U | Livermore Pool-Type,
Thermal
Reactor, LLNL | Thermal
Reactor
Spectrum | 0.3 – ?s | 5 | LSF | | | | | | | | | | | | ²³³ U | Cahn et al. (1945) | 25 | ? | Argonne CP-3
Reactor | Thermal
Spectrum | 0.25 – 0.4 s | 5 | Graphical | | ²³³ U | Girshfeld
(1955) | 37 | 58.9 mg ²³³ U foil | ? reactor | Thermal
Spectrum | 0.4 – 180 s | 4 | Graphical | | ²³³ U | Rose & Smith (1957) | 38 | 10.0 gms ²³³ U | ZEPHYR Reactor,
Harwell | Fast
Spectrum | ~1 – 300 s | 5 | Graphical | | ²³³ U | Keepin et al.
(1957) | 39 | ~2–5 gms U
100% ²³³ U | Godiva Reactor,
Los Alamos | Thermal & Fast
Spectra | 0.05 – 330 s | 6 | LSF | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |------------------|------------------------------|--------|---|--|---|----------------------|------------------|--------------------| | ²³³ U | Maksyutenko
(1963) | 45 | 3.63 gms ²³³ U | ? accelerator | 15 MeV | ? | 5 | LSF | | ²³³ U | Maksyutenko
(1967) | 54, 56 | ? | Van de Graaff,
Zr-Deuterium target | 5.6, 6.0, 6.2, 6.4,
6.8, 7.25 MeV | ? | 5 | LSF | | ²³³ U | Rambo
(1969) | 63 | 15.251 gms UO ₂
98.33% ²³³ U | VPI Research
Reactor, Virgina | Thermal
Spectrum | ~0.04–319 s | 5 | LSF | | ²³³ U | Onega et al. (1969) | 64 | 15 gms ²³³ U | VPI Research
Reactor, Virginia | Thermal
Spectrum | ~0.04–319 s | 5 | LSF | | ²³³ U | East et al. (1970) | 67, 74 | ~10 gms U metal
97.5% ²³³ U | Accelerator I,
Los Alamos | 14.7 MeV | 0.02 – 385 s | 6 | LSF | | ²³³ U | Maksyutenko
et al. (1971) | 72 | ? | Van de Graaff,
Titanium-Tritium
target | 18.0, 18.2, 18.5,
18.8, 19.0, 19.5,
20.0, 20.5, 21.0
MeV | 5 – 512 s | 11 | LSF | | ²³³ U | Waldo et al.
(1981) | 82, 83 | A few μg/mg of U: 95.1% ²³³ U 3.5% ²³⁸ U 0.8% ²³⁵ U 0.5% ²³⁹ U 0.1% ²³⁶ U 4 ppm ²³² U | Livermore Pool-Type,
Thermal
Reactor, LLNL | Thermal
Spectrum | 0.3 – ?s | 6 | LSF | | ²³³ U | Benedetti et al. (1982) | 84 | A few mg of oxide powder, 100% ²³³ U | L54 reactor,
Italy | Fast
Spectrum | 0.6 – 700 s | 5 | LSF | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |------------------|---------------------------------|--------|---|---|----------------------------|----------------------|------------------|--------------------| | 233 _U | Gudkov et al. (1989) | 87 | ? | BR-1 Reactor,
Obninsk, Russia | Fission
Spectrum | 0.8 – 600 s | 6 | LSF | | | | | | | | | | | | ²³⁵ U | Snell, et al.
(1942, 1943) | 17, 19 | 48.0 Kg of U ₃ O ₈ natural enrichment | Univ. Chicago
cyclotron:
Be-target
in paraffin | Thermal
Spectrum | ~0.5–780 s | 4 | Graphical | | ²³⁵ U | Wilson & Sutton
(1944) | 20,28 | 1.93 gms ²³⁵ U
15.5 gms ²³⁸ U
in paraffin | Los Alamos
cyclotron | Thermal
Spectrum | ~ few ms | ? | ? | | ²³⁵ U | Redman &
Saxon (1944) | 21, 31 | 1.28 gms
"considerably
enriched" U | Argonne Graphite
Pile | Thermal
Spectrum | 0.6 – 1.0 s | 4 | Graphical | | ²³⁵ U | de Hoffmann et
al. (1945) | 23, 33 | ~73% enriched UH ₁₀ | Dragon Reactor,
Los Alamos | ~Thermal
Spectrum | ~0.2 s | 5 | Graphical | | 235 _U | Hughes, Dabbs,
et al. (1945) | 24, 32 | ~3 gms U ₃ O ₈ powder
~89% enriched | Argonne CP-3
Reactor | Thermal
Spectrum | 0.25 – 0.4 s | 5 | Graphical | | ²³⁵ U | Snell et al.
(1946, 1947) | 27, 29 | Uranyl nitrate solution | Univ. Chicago
cyclotron
Be target | Thermal
Spectrum | 0.32 s | 5 | Graphical | | 235 _U | Keepin et al. (1955) | 36 | A few gms ²³⁵ U isotopically pure | Godiva reactor,
Los Alamos | ~ Fission
Spectrum | ~0.05–300 s | 6 | LSF | | ²³⁵ U | Girshfeld
(1955) | 37 | 33.2 mg ²³⁵ U foil | ? reactor | Thermal
Spectrum | ~0.4–180 s | 5 | Graphical | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |------------------|---------------------------|------|--|-------------------------------------|---|----------------------|------------------|--------------------| | 235 _U | Rose & Smith (1957) | 38 | 5.75 gms ²³⁵ U | ZEPHYR Reactor,
Harwell | Fast
Spectrum | ~1–300 s | 5 | Graphical | | ²³⁵ U | Keepin et al.
(1957) | 39 | ~2–5 gms U:
99.9% ²³⁵ U | Godiva Reactor,
LASL | Thermal & Fast
Spectra | ~0.05–330 s | 6 | LSF | | ²³⁵ U | Maksyutenko
(1958) | 41 | ~160 gms U | An accelerator—
heavy ice target | Thermal, 2.4, 3.3, 15 MeV | ~0.25–360 s | 5 | LSF | | ²³⁵ U | Hahn
(1964) | 46 | 9.15 gms U:
93% ²³⁵ U,
1% ²³⁴ U | Princeton
Accelerator, USA | 14 MeV | <0.48–400 s | 4 | LSF | | ²³⁵ U | Maksyutenko
(1965) | 49 | U metal:
90% ²³⁵ U
10% ²³⁸ U | Van de Graff
accelerator | 6.0 MeV | ~0.25–360 s | 5 | LSF | | ²³⁵ U | Maksyutenko
(1967) | 54 | ? | ? | 5.0, 6.0, 6.3, 6.6,
6.9, 7.22, 7.76
MeV | ? | 5 | LSF | | 235 _U | Maksyutenko et al. (1967) | 55 | ? | ? | 18.5, 19.5, 20.0,
21.0 MeV | ? | 5 | LSF | | 235 _U | Schussler et al. (1968) | 57 | ? | ? | Thermal
Spectrum | ? | 5 | ? | | 235 _U | Cox & Whiting (1968) | 59 | ~45 gms U | Van de Graaff,
Li(p,n) | 0.5, 0.6, 1.3
MeV | 0.2 – 400 s | 5 | LSF | | ²³⁵ U | Rambo (1969) | 63 | 15.0 gms U ₃ O ₈
99.564% ²³⁵ U | VPI Research
Reactor | Thermal
Spectrum | ~0.04–319 s | 5 | LSF | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |------------------|---------------------------------|--------|--|--|----------------------------|----------------------|------------------|--------------------| | 235 _U | Onega et al. (1969) |
64 | 15 gms ²³⁵ U | VPI Research
Reactor | Thermal
Spectrum | ~0.04–319 s | 5 | LSF | | 235 _U | Auguston et al. (1969) | 65, 69 | ~10 gms U metal:
93% ²³⁵ U | Cockroft–Walton,
(D,T) target | 14.9 MeV | 0.02 – 303 s | 6 | LSF | | 235 _U | East et al. (1970) | 67, 74 | ~10 gms U metal
99% ²³⁵ U | Accelerator I,
Los Alamos | 14.7 MeV | 0.02 – 385 s | 6 | LSF | | 235 _U | Chrysochoides
et al. (1970) | 70 | ? | Democritos Reactor,
Greece | Above Cd
Cutoff | 30 – 320 s | 3 | LSF | | 235 _U | Schussler &
Herrnann (1972) | 76 | ? | ? | Thermal
Spectrum | ? | 6 | LSF | | ²³⁵ U | Besant et al. (1977) | 81 | 0.035 – 8.3 gm U metal:
95.54% ²³⁵ U
3.10% ²³⁸ U
1.20% ²³⁴ U
0.17% ²³⁶ U | VIPER Reactor,
England | Fast Reactor
Spectrum | 0.035–900 s | 6 | LSF | | ²³⁵ U | Waldo et al.
(1981) | 82, 83 | A few µg/mg of
enriched uranium
93.7% ²³⁵ U | Livermore Pool-Type,
Thermal
Reactor, LLNL | Thermal
Spectrum | 0.3 – ?s | 5 | LSF | | ²³⁵ U | Synetos &
Williams
(1983) | 85 | 35 – 350 mg metal foils:
95.54% ²³⁵ U
4.46% ²³⁸ U | Univ. of London
Reactor, England | Thermal
Spectrum | 0.38 – 380 s | 5 | LSF | | ²³⁵ U | Gudkov et al.
(1989) | 86 | 2.09 μg ²³⁵ U | IRT Reactor,
Russia | Thermal
Spectrum | ~1 - ? s | 5 | LSF | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |------------------|----------------------------|--------------------|---|--|---|----------------------|------------------|--------------------| | 235 _U | Gudkov et al. (1989) | 88 | ? | BR-1 Reactor,
Russia | Fast
Spectrum | ~1 – ? s | 6 | LSF | | ²³⁵ U | Charlton et al.
(1996) | 90, 93 | 12 mg U
97.663% ²³⁵ U
2.337% ²³⁸ U | Texas A&M
TRIGA Reactor,
USA | Fast
Spectrum | 0.51 – 900 s | 5, 6 | LSF | | ²³⁵ U | Saleh et al.
(1997) | 91 | 10 – 300 mg U:
97.663% ²³⁵ U | Texas A&M
TRIGA Reactor,
USA | Thermal
Spectrum | 0.44 – 350 s | 5 | LSF | | ²³⁵ U | Piksaikin et al.
(1997) | 92, 94,
97, 101 | ? | ? | 0.370, 0.624,
0.859, 1.059,
1.165 MeV | 0.15 - 300 s | 6, 8 | LSF | | ²³⁵ U | Loaiza et al.
(1997) | 95 | 3 g U
93.5% ²³⁵ U
5.3% ²³⁸ U
1.2% ²³⁴ U | Godiva Reactor,
LANL,USA | Fast
Spectrum | 0.075 - 300 s | 6 | LSF | | ²³⁵ U | Charlton et al. (1998) | 98 | 12 mg U
97.663% ²³⁵ U
2.337% ²³⁸ U | Texas A&M
TRIGA Reactor,
USA | Fast
Spectrum | 0.51 – 900 s | 6 | LSF | | ²³⁵ U | Kellett. (1998) | 99 | 40 gms U;
93% ²³⁵ U
7% ²³⁸ U | Dynamitron Accel.,
Birmingham,
England | 1.1–5.15 MeV | 1.1 – 39.4 s | 3, 6, 9, | LSF | | | | | | | | | | | | 236 _U | Gudkov et al.
(1989) | 87 | ? | BR-1 Reactor,
Russia | Fast
Spectrum | 0.8 – 600 a | 6 | LSF | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |------------------|-----------------------|------|--|--|--|----------------------|------------------|--------------------| | | | | | | | | | | | ²³⁸ U | Sun et al.
(1950) | 35 | 2.26 Kg ²³⁸ U metal:
Cd covered
99.3% ²³⁸ U, 0.7% ²³⁵ U | Univ. of Pittsburgh cyclotron—C, LiF, B ₄ C targets | 14, 29 MeV | ? – 500 s | 2–5 | Graphical | | ²³⁸ U | Keepin et al. (1955) | 36 | A few gms ²³⁸ U isotopically pure | Godiva reactor,
Los Alamos | ~ Fission
Spectrum | ~0.05–300 s | 6 | LSF | | ²³⁸ U | Rose & Smith (1957) | 38 | 72.5 gms ²³⁸ U:
natural enrichment | ZEPHYR Reactor,
Harwell | Fast
Spectrum | ~1 – 300 s | 5 | Graphical | | ²³⁸ U | Keepin et al. (1957) | 39 | ~2–5 gms U:
99.98% ²³⁸ U | Godiva Reactor,
Los Alamos | Fast
Spectrum | ~0.05–330 s | 6 | LSF | | ²³⁸ U | Maksyutenko
(1958) | 41 | ~160 gms U | An accelerator—
heavy ice target | 2.4, 3.3, 15
MeV | ~0.25–360 s | 5 | LSF | | ²³⁸ U | Hermann et al. (1965) | 47 | A few gms ²³⁸ U:
99.7% ²³⁸ U
0.3% ²³⁵ U | An accelerator | 14 MeV | ? | 4 | ? | | ²³⁸ U | Maksyutenko
(1965) | 48 | ? | Van de Graff ² H(d,n) ³ He ³ H(d,n) ⁴ He | 1.5, 2.3, 3.8,
5.75, 6.5, 15
MeV | 5.5 – ?s | 5-6 | LSF | | ²³⁸ U | Maksyutenko
(1965) | 49 | 238U metal
thick target 20 mg/cm ² | Van de Graff
accelerator | 1.75 MeV max | ~0.25–360 s | 5 | LSF | | ²³⁸ U | Bucko (1966) | 51 | natural enrichment U ₃ O ₈ | Atomki
Neutron Generator | 14.7 MeV | 0.5 – ? s | 5 | Graphical | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |------------------|------------------------------|--------|--|---|---|----------------------|------------------|--------------------| | ²³⁸ U | Hermann
(1967) | 53 | Several gms U metal:
99.7% ²³⁸ U,
0.3% ²³⁵ U | An accelerator—
Be-D reaction | 14MeV | 0.3 – 400 s | 6 | LSF | | ²³⁸ U | Maksyutenko
(1967) | 54 | ? | Van de Graaff | 5.0, 6.0, 6.4, 6.6,
6.8, 6.9, 7.1,
7.25, 7.5, 7.76
MeV | ? | 5 | LSF | | ²³⁸ U | Maksyutenko
et al. (1967) | 55 | ? | Van de Graaff | 18.0, 19.0, 19.5,
20.0 MeV | ? | 5 | LSF | | ²³⁸ U | Maksyutenko
et al. (1968) | 58 | ? | Van de Graaff,
Tritium-Zr target | 18.2, 18.5, 18.8,
19.3, 19.7, 20.5,
21.0 MeV | ? | 5 | LSF | | ²³⁸ U | Cox & Whiting (1968) | 59 | ~45 gms U | Van de Graaff,
Li(p,n) | 1.4, 1.5, 1.75
MeV | 0.2 – 400 s | 5 | LSF | | ²³⁸ U | Notea (1969) | 62 | ? | ? | 14 MeV | ? | 5 | ? | | ²³⁸ U | Auguston et al. (1969) | 65, 69 | 10 gms U metal:
99.7% ²³⁸ U | Cockroft–Walton,
(D,T) target | 14.9 MeV | 0.02 – 303 s | 6 | LSF | | ²³⁸ U | East et al. (1970) | 67, 74 | ~10 gms U metal:
99.6% ²³⁸ U | Accelerator I,
Los Alamos | 14.7 MeV | 0.02 – 385 s | 6 | LSF | | ²³⁸ U | Brown et al. (1971) | 71 | ~10 gms depleted UO ₃ | S.A.M.E.S.
neutron generator,
³ H(d,n) ⁴ He | 14.8 MeV | ? | 4 | ? | | ²³⁸ U | Benedict et al. (1972) | 75 | ? | ? | 14.8 MeV | ? | 6 | LSF | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |-------------------|------------------------------|--------|---|---|---|----------------------|------------------|--------------------| | ²³⁸ U | Maksyutenko
et al. (1974) | 80 | 30 gm U metal | KG-2.5 Accelerator,
Titanium-deuterium
target | 3.9, 4.2, 4.5, 4.8,
5.1 MeV | 5 – 1024 s | 4 | LSF | | ²³⁸ U | Besant et al. (1977) | 81 | 0.25 – 11.2 gm U metal:
99.61% ²³⁸ U
0.39% ²³⁵ U | VIPER Reactor,
England | Fast Reactor
Spectrum | 0.035 - 900 s | 6 | LSF | | ²³⁸ U | Waldo et al.
(1981) | 82, 83 | A few μg/mg of ultra-pure uranium 99.999% ²³⁸ U | Livermore Pool-Type,
Thermal
Reactor, LLNL | Fast Component
of Thermal
Spectrum | 0.3 – ?s | 6 | LSF | | ²³⁸ U | Kellett. (1998) | 99 | 9.6, 24, 48 gms U;
99.7% ²³⁸ U
0.3% ²³⁵ U | Dynamitron Accel.,
Birmingham,
England | 1.1–5.15 MeV | 1.1 – 39.4 s | 3, 6, 9, | LSF | | | | | | | | | | | | ²³⁷ Np | Sanguist et al. (1973) | 78 | 30 mg of Np:
~2% ²²⁸ Th | L54 Reactor | Fast
Spectrum | 1 – ? s | 2 | LSF | | ²³⁷ Np | Maksyutenko
et al. (1974) | 79 | ? | Van de Graaff,
T(p,n) ³ He | 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0, 1.1,
1.2 MeV | 5 – 1024 s | 4 | LSF | | ²³⁷ Np | Waldo et al.
(1981) | 82, 83 | A few μg/mg of Np:
99.19% ²³⁷ Np
0.7% Th
0.1% U
0.01% Pu | Livermore Pool-Type,
Thermal
Reactor, LLNL | Fast Component
of Reactor
Spectrum | 0.3 – ? s | 6 | LSF | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |-------------------|----------------------------|--------------------|---|------------------------------------|---|----------------------|------------------|--------------------| | ²³⁷ Np | Benedetti et al. (1982) | 84 | A few mg of oxide powder 100% ²³⁷ Np | L54 reactor,
Italy | Fast
Spectrum | 0.6 – 700 s | 5 | LSF | | ²³⁷ Np | Gudkov et al. (1989) | 87 | ? | BR-1 Reactor,
Russia | Fast
Spectrum | 0.8 – 600 a | 6 | LSF | | ²³⁷ Np | Saleh et al. (1995) | 89, 91 | 10 mg Np
99.999% ²³⁷ Np | Texas A&M Reactor,
USA | 20% Thermal,
80% Fast
Spectrum | 0.44 – 350 s | 5 | LSF | | ²³⁷ Np | Charlton et al. (1996) | 90, 93 | 10 mg Np
99.999% ²³⁷ Np | Texas A&M
TRIGA Reactor,
USA | Fast
Spectrum | 0.51 – 900 s | 6 | LSF | | ²³⁷ Np | Loaiza.
(1997) | 96 | 4 g ²³⁷ Np
99.19%
0.81 other | Godiva
Los Alamos, USA | Fast
Spectrum | 0.075 - 300 s | 6 | LSF | | ²³⁷ Np | Piksaikin et al.
(1997) | 92, 94,
97, 101 | ? | ? | 0.586, 1.008,
3.745, 4.196,
4.719 MeV | 0.15 - 300 s | 6, 8 | LSF | | ²³⁷ Np | Charlton et al. (1998) | 98, 100 | 10 mg Np
99.999% ²³⁷ Np | Texas A&M
TRIGA Reactor,
USA | Fast
Spectrum | 0.5
– 900 s | 6, 7 | LSF | | | | | | | | | | | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |-------------------|---------------------------------|--------|---|--|----------------------------|----------------------|------------------|--------------------| | ²³⁸ Pu | Waldo et al.
(1981) | 82, 83 | A few μg/mg of
isotopically purified Pu
99.8% ²³⁸ Pu
0.1% ²³⁹ Pu
<0.1% ²³⁸ U | Livermore Pool-Type,
Thermal
Reactor, LLNL | Thermal
Spectrum | 0.3 – ? s | 6 | LSF | | ²³⁸ Pu | Benedetti et al.
(1982) | 84 | A few mg of
oxide powder
92.43% ²³⁸ Pu
4.88% ²³⁴ U,
1.10% ²³⁷ Np,
0.64% ²³⁹ Pu
0.89% ²⁴⁰ Pu,
0.04% ²⁴¹ Am
0.02% ²⁴² Pu | L54 reactor,
Italy | Fast
Spectrum | 0.6 – 700 s | 5 | LSF | | | | | | | | | | | | ²³⁹ Pu | Wilson & Sutton
(1944) | 20,28 | 0.565 gms ²³⁹ Pu surrounded by paraffin | Los Alamos
cyclotron, USA | Thermal
Spectrum | ~ few ms | _ | _ | | ²³⁹ Pu | Redman &
Saxon (1944) | 21, 31 | $1.0862~\mathrm{gms~PuO}_2$ | Graphite Pile, ANL,
Chicago, USA | Thermal
Spectrum | 0.6 – 1.0 s | 4 | Graphical | | ²³⁹ Pu | Feld & de
Hoffmann
(1945) | 22 | 5.6 gms ²³⁹ Pu metal
with Cd cover
(purity not reported) | Water Boiler Reactor,
Los Alamos, USA | ~Thermal
Spectrum | 2 or 5 s | 4 | Graphical | | ²³⁹ Pu | Perry et al. (1946) | 26 | 118 gms of Pu | electrostatic gen.— ⁷ Li(p,n) ⁷ Be | 0.4–0.6 MeV | 0.01 s | 5 | Graphical | | ²³⁹ Pu | de Hoffmann &
Feld (1947) | 30 | ²³⁹ Pu metal
with Cd cover | Water Boiler Reactor,
Los Alamos, USA | ~Thermal
Spectrum | 2 | 4 | Graphical | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |-------------------|------------------------------|------|---|--|---|----------------------|------------------|--------------------| | ²³⁹ Pu | Keepin et al. (1955) | 36 | A few gms ²³⁹ Pu | Godiva reactor,
Los Alamos, USA | ~ Fission
Spectrum | ~0.05–300 s | 6 | LSF | | ²³⁹ Pu | Rose & Smith (1957) | 38 | 9.74 gms ²³⁹ Pu | ZEPHYR Reactor,
Harwell, England | Fast
Spectrum | ~1 – 300 s | 5 | Graphical | | ²³⁹ Pu | Keepin et al. (1957) | 39 | ~2–5 gms Pu
99.8% ²³⁹ Pu | Godiva Reactor,
Los Alamos, USA | Thermal & Fast
Spectra | ~0.05–330 s | 6 | LSF | | ²³⁹ Pu | Maksyutenko (1963) | 44 | ? | ? accelerator,
Russia | 3.8, 15 MeV | ? – 280 s | 5, 6 | LSF | | ²³⁹ Pu | Maksyutenko
(1967) | 54 | ? | ? | 5.5, 6.5, 7.0, 7.5,
7.8 MeV | ? | 5 | LSF | | ²³⁹ Pu | Huizinga
(1968) | 60 | 17.01 gms Plutonium:
0.030% ²³⁸ Pu
94.466% ²³⁹ Pu
4.762% ²⁴⁰ Pu
0.508% ²⁴¹ Pu
0.270% ²⁴² Pu | VPI Research
Reactor, Virginia,
USA | Thermal
Spectrum | ~0.04–300 s | 5 | LSF | | ²³⁹ Pu | Onega et al.
(1969) | 64 | 15 gms ²³⁹ Pu | VPI Research
Reactor, Virginia,
USA | Thermal
Spectrum | 0.04–319 s | 5 | LSF | | ²³⁹ Pu | Maksyutenko
et al. (1971) | 72 | ? | Van de Graaff,
Titanium-Tritium
target | 18.0, 18.2, 18.5,
18.8, 19.0, 19.5,
20.0, 20.5, 21.0
MeV | 5 – 512 s | 11 | LSF | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |-------------------|-------------------------|--------|---|--|----------------------------|----------------------|------------------|--------------------| | ²³⁹ Pu | Besant et al. (1977) | 81 | 0.18 – 12.39 gm Pu metal
93.85% ²³⁹ Pu
5.79% ²⁴⁰ Pu
0.36% ²⁴¹ Pu | VIPER Reactor,
England | Fast Reactor
Spectrum | 0.035 –900 s | 6 | LSF | | ²³⁹ Pu | Waldo et al.
(1981) | 82, 83 | A few µg/mg of
chemically purified
plutonium
93.6% ²³⁹ Pu
5.7% ²⁴⁰ Pu
0.65% ²⁴¹ Pu
0.01% ²³⁸ Pu | Livermore Pool-Type,
Thermal Reactor,
LLNL | Thermal
Spectrum | 0.3 – ? s | 6 | LSF | | | | | | | | | | | | ²⁴⁰ Pu | Keepin et al. (1957) | 39 | ~2–5 gms Pu
81.5% ²⁴⁰ Pu | Godiva Reactor,
Los Alamos, USA | Fast
Spectrum | ~0.05–330 s | 6 | LSF | | ²⁴⁰ Pu | Benedetti et al. (1982) | 84 | A few mg of oxide powder 98.07% ²⁴⁰ Pu, 0.90% ²³⁹ Pu, 0.53% ²⁴¹ Pu, 0.29% ²⁴² Pu, 0.21% ²⁴¹ Am, | L54 reactor,
Italy | Fast
Spectrum | 0.6 – 700 s | 5 | LSF | | ²⁴⁰ Pu | Gudkov et al. (1989) | 87 | ? | BR-1 Reactor,
Russia | Fast
Spectrum | 0.8 – 600 a | 6 | LSF | | | | | | | | | | | | ²⁴¹ Pu | Cox
(1961) | 43 | 2.55 mg ²⁴¹ Pu as
film on a Platinum disk | Argonne Research reactor | Thermal
Spectrum | 0.5 – 1000 s | 5 | LSF | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |-------------------|-------------------------|--------|---|--|--|----------------------|------------------|--------------------| | ²⁴¹ Pu | Waldo et al.
(1981) | 82, 83 | A few μg/mg of isotopically separated plutonium 99.8% ²⁴¹ Pu <0.1% ²⁴⁰ Pu 0.1% ²⁴² Pu | Livermore Pool-Type,
Thermal Reactor,
LLNL | Thermal
Spectrum | 0.3 – ?s | 6 | LSF | | ²⁴¹ Pu | Benedetti et al. (1982) | 84 | A few mg of
oxide powder
81.94% ²⁴¹ Pu,
17.66% ²⁴¹ Am,
0.12% ²³⁷ Np
0.07% ²³⁹ Pu,
0.13% ²⁴⁰ Pu,
0.08% ²⁴² Pu | L54 reactor,
Italy | Fast
Spectrum | 0.6 – 700 s | 5 | LSF | | ²⁴¹ Pu | Gudkov et al. (1989) | 87 | ? | BR-1 Reactor,
Obninsk, Russia | Fast
Spectrum | 0.8 – 600 a | 6 | LSF | | | | | | | | | | | | ²⁴² Pu | Auguston et al. (1969) | 66 | A few gms Pu
99.91% ²⁴² Pu | Accelerator I,
Los Alamos, USA | 14.7 MeV | ~0.02–302 s | 6 | LSF | | ²⁴² Pu | East et al. (1970) | 68 | A few gms Pu
99.91% ²⁴² Pu | Accelerator I,
Los Alamos, USA | 14.7 MeV | ~0.02–302 s | 6 | LSF | | ²⁴² Pu | Waldo et al.
(1981) | 82, 83 | A few μg/mg of
high purity plutonium
99.90% ²⁴² Pu | Livermore Pool-Type,
Thermal Reactor,
LLNL | Fast Component
of Reactor
Spectrum | 0.3 – ? s | 6 | LSF | | | | | | | | | | | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |--------------------------------|---------------------------|--------|---|---|----------------------------|----------------------|------------------|--------------------| | ²⁴¹ Am | Sanguist et al.
(1973) | 78 | 5 mg of Am
<1000 ppm U
700 ppm Pu | L54 Reactor,
Italy | Fast
Spectrum | 1 – ? s | 2 | LSF | | ²⁴¹ Am | Waldo et al.
(1981) | 82, 83 | Chemically purified americium 98.1% ²⁴¹ Am 1.8% ²³⁷ Np <0.1% other | Livermore Pool-Type, Thermal Reactor, LLNL | Thermal
Spectrum | 0.3 – ?s | 5 | LSF | | ²⁴¹ Am | Benedetti et al. (1982) | 84 | A few mg of
oxide powder
97.37% ²⁴¹ Am,
1.88% ²³⁷ Np
0.75% ²³⁹ Pu | L54 reactor,
Italy | Fast
Spectrum | 0.6 – 700 s | 5 | LSF | | ²⁴¹ Am | Gudkov et al. (1989) | 88 | ? | BR-1 Reactor,
Obninsk, Russia | Fast
Spectrum | ~1 - ? s | 6 | LSF | | ²⁴¹ Am | Saleh et al.
(1995) | 89, 91 | ? mg
100% ²⁴¹ Am | Texas A&M
TRIGA Reactor,
USA | Thermal
Spectrum | 0.44 – 350 s | 5 | LSF | | | | | | | | | | | | ²⁴² Am ^m | Waldo et al.
(1981) | 82, 83 | Isotopically purified americium 99.21% ²⁴² Am ^m 0.79% ²⁴¹ Am <0.007% ²⁴³ Am | Livermore Pool-Type,
Thermal Reactor
LLNL | Thermal
Spectrum | 0.3 – ? s | 6 | LSF | | | | | | | | | | | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |-------------------|---------------------------|---------|--|---|------------------------------------|----------------------|------------------|--------------------| | ²⁴³ Am | Saleh et al.
(1995) | 89, 91 | 10 – 25 mg
99.997% ²⁴³ Am | Texas A&M
TRIGA Reactor,
USA | Predominatedly
Fast
Spectrum | 0.44 – 350 s | 5 | LSF | | ²⁴³ Am | Charlton et al.
(1997) | 93 | 10 – 25 mg Am
99.987% ²⁴³ Am | Texas A&M
TRIGA Reactor,
USA | Fast
Spectrum | 0.51 – 900 s | 6 | LSF | | ²⁴³ Am | Charlton et al. (1998) | 98, 100 | 10 – 25 mg Am
99.987% ²⁴³ Am | Texas A&M
TRIGA Reactor,
USA | Fast
Spectrum | 0.51 – 900 s | 6, 7 | LSF | | | | | | | | | | | | ²⁴⁵ Cm | Waldo et al.
(1981) | 82, 83 |
Isotopically purified curium 99.26% ²⁴⁵ Cm 0.281% ²⁴⁴ Cm 0.215% ²⁴⁶ Cm 0.013% ²⁴⁷ Cm | Livermore Pool-Type,
Thermal Reactor
LLNL | Thermal
Spectrum | 0.3 – ? s | 6 | LSF | | | | | | | | | | | | ²⁴⁹ Cf | Waldo et al.
(1981) | 82, 83 | Chemically purified californium 99.9% ²⁴⁹ Cf <0.1% other | Livermore Pool-Type,
Thermal Reactor
LLNL | Thermal
Spectrum | 0.3 – ? s | 4 | LSF | | | | | | | | | | | | ²⁵² Cf | Smith et al.
(1958) | 40, 42 | 100% ²⁵² Cf | ²⁵² Cf source | Spontaneous
Fission | ~0.3 – ? s | 3 | LSF | Table III. Summary of Experimental Results. | Isotope | Author(s) | Ref. | Sample Composition | Neutron Source | Incident
Neutron Energy | Counting
Interval | No. of
Groups | Analysis
Method | |-------------------|-----------------------|--------|--|--------------------------|----------------------------|----------------------|------------------|--------------------| | ²⁵² Cf | Chulick et al. (1969) | 61, 73 | 10 μg ²⁵² Cf,
covered with gold foil | ²⁵² Cf source | Spontaneous
Fission | 0.7 - s | 4 | LSF | | | | | | | | | | | Fig. 5. Delayed Neutron Decay Curve for Thermal Fission of ²²⁹Th. Fig. 6. Delayed Neutron Decay Curve for Fast Fission of ²³²Th. Fig. 7. Delayed Neutron Decay Curve for Transitional Energy Fission of ²³²Th. Fig. 8. Delayed Neutron Decay Curve for High Energy Fission of ²³²Th. Fig. 9. Delayed Neutron Decay Curve for Fast Fission of ²³¹Pa. Fig. 10. Delayed Neutron Decay Curve for High Energy Fission of ²³¹Pa. Fig. 11. Delayed Neutron Decay Curve for Thermal Fission of ²³²U. Fig. 12. Delayed Neutron Decay Curve for Thermal Fission of ²³³U. Fig. 13. Delayed Neutron Decay Curve for Fast Fission of ²³³U. Fig. 14. Delayed Neutron Decay Curve for Transitional Energy Fission of $^{233}\mathrm{U}.$ Fig. 15. Delayed Neutron Decay Curve for High Energy Fission of ²³³U. Fig. 16. Delayed Neutron Decay Curve for Thermal Fission of ²³⁵U. Fig. 17. Delayed Neutron Decay Curve for Fast Fission of ²³⁵U. Fig. 18. Delayed Neutron Decay Curve for Transitional Energy Fission of $^{235}\mathrm{U}.$ Fig. 19. Delayed Neutron Decay Curve for High Energy Fission of ²³⁵U. Fig. 20. Delayed Neutron Decay Curve for Fast Fission of ²³⁶U. Fig. 21. Delayed Neutron Decay Curve for Fast Fission of ²³⁸U. Fig. 22. Delayed Neutron Decay Curve for Transitional Energy Fission of 238 U. Fig. 23. Delayed Neutron Decay Curve for High Energy Fission of ²³⁸U. Fig. 24. Delayed Neutron Decay Curve for Fast Fission of ²³⁷Np. Fig. 25. Delayed Neutron Decay Curve for Thermal Fission of ²³⁸Pu. Fig. 26. Delayed Neutron Decay Curve for Fast Fission of ²³⁸Pu. Fig. 27. Delayed Neutron Decay Curve for Thermal Fission of ²³⁹Pu. Fig. 28. Delayed Neutron Decay Curve for Fast Fission of ²³⁹Pu. Fig. 29. Delayed Neutron Decay Curve for Transitional Energy Fission of ²³⁹Pu. Fig. 30. Delayed Neutron Decay Curve for High Energy Fission of ²³⁹Pu. Fig. 31. Delayed Neutron Decay Curve for Fast Fission of ²⁴⁰Pu. Fig. 32. Delayed Neutron Decay Curve for Thermal Fission of ²⁴¹Pu. Fig. 33. Delayed Neutron Decay Curve for Fast Fission of ²⁴¹Pu. Fig. 34. Delayed Neutron Decay Curve for Fast Fission of ²⁴²Pu. Fig. 35. Delayed Neutron Decay Curve for High Fission of ²⁴²Pu. Fig. 36. Delayed Neutron Decay Curve for Thermal Fission of ²⁴¹Am. Fig. 37. Delayed Neutron Decay Curve for Fast Fission of ²⁴¹Am. Fig. 38. Delayed Neutron Decay Curve for Thermal Fission of ^{242m}Am. Fig. 39. Delayed Neutron Decay Curve for Fast Fission of ²⁴³Am. Fig. 40. Delayed Neutron Decay Curve for Thermal Fission of ²⁴⁵Cm. Fig. 41. Delayed Neutron Decay Curve for Thermal Fission of ²⁴⁹Cf. Fig. 42. Delayed Neutron Decay Curve for Spontaneous Fission of ²⁴⁹Cf. ## **DISCUSSION** Delayed neutron parameters used in reactor dynamic calculations have traditionally been determined from a least-squares fit (LSF) of an aggregate decay curve of delayed neutrons emitted from a small sample of fissionable material irradiated by a strong neutron source. When performing the LSF, it has been customary to assume that the decay curve can be represented by the sum of exponentials (usually 5 or 6) in which both the abundances, a_i , and the decay constants, λ_i , of the exponentials are free parameters in the fit. As a consequence of allowing all parameters to be free in the LSF, the converged values of the abundances and decay constants usually differ from isotope-to-isotope as well as varying as a function of incident neutron energy. Furthermore, the decay constants obtained in this fashion will not necessarily converge to the decay constants of any of the 271 potential delayed-neutron emitters. As explained by Keepin (1965), the decay constants obtained during the LSF of the aggregate decay curve actually represent weighted averages based on the abundances and half-lives of the various precursors contributing to each group. Although Keepin's rationale readily explains the variation in the decay constants for the short-lived and intermediate-lived groups, the observed variation in the decay constant of the longest-lived group (i.e., group 1 in the current 6-group model) is not as easily explained. Because ⁸⁷Br is the only known precursor of *significant* yield with a half-life on that order, then the half-life of group 1 is expected to correspond to the half-life of ⁸⁷Br regardless of the fissioning isotope or incident neutron energy. However, the measured half-life of group 1 exhibits rather large fluctuations (see Table IV) considering the precision of some of the individual measurements. We postulate that some of these fluctuations might be caused by unknown systematic errors associated with the data analysis technique. One potential source of systematic error may be associated with the background correction at the tail end of the observed delayed neutron decay curve. In most of the delayed neutron experiments, the neutron background was reported to be on the order of 1 cps. Consequently, the uncertainty of the background count rate was quite large in all experiments except in those few cases in which the background was measured over long periods of time. When coupled with the large uncertainties associated with the small count rates encountered at the tail end of the decay curve (e.g., 2 or 3 cps above background), any small bias in the background correction could potentially cause the measured slope of the decay curve to differ from the true slope by a few percent. Another potential source of systematic error is postulated to be associated with the maximum length of time the delayed neutron decay curves could be observed. The delayed neutron yields during these measurements were usually very small because of size limitations imposed on the samples to minimize multiplication effects. As a consequence, most experimenters were only able to follow their decay curves for approximately 300 s before reaching background. Unfortunately, this length of time is not quite long enough for the decay curves to reach their true asymptotic decay rate, which presumably corresponds to the decay constant of ⁸⁷Br. As an example, consider the decay curve for the thermal fissioning of ²³⁵U generated using Keepin's six-group parameters. At 300 s the instantaneous decay rate is approximately 95% of the asymptotic decay rate, and does not reach 99.99% of the asymptotic decay rate until approximately 900 s. Hence, resolving the true asymptotic decay rate from an abbreviated decay curve (e.g., 0 to ~300 s) can be very challenging for most LSF algorithms, particularly when using data that exhibits large statistical fluctuations. To demonstrate this effect, a numerical test was performed using simulated data and the original least-squares-fitting code used by Keepin to fit his experimental data. When the simulated data spanned 1000 s, with most of the data occurring in the first 10 seconds of the decay curve, the LSF code was able to accurately resolve all of the decay constants and group abundances used to generate the simulated decay curve data. However, when Table IV. Experimentally-Measured Half-Life of Group 1 | Isotope | Half-life (s) | Isotope | Half-life (s) | |-------------------------------------|------------------|-------------|------------------| | Th-229_ther | 55.72 ± 1.3 | Np-237_fast | 55.10 ± 0.18 | | Th-232_fast | 56.03 ± 0.01 | Np-237_fast | 54.58 ± 0.86 | | Th-232_fast | 55.41 ± 0.09 | Np-237_fast | 53.73 ± 2.5 | | U-232_fast | 54.32 ± 0.17 | Np-237_fast | 55.32 ± 0.94 | | U-233_ther | 55.60 ± 0.20 | Np-237_inte | 55.18 ± 0.55 | | U-233_ther | 55.30 ± 0.90 | Np-237_inte | 54.65 ± 0.55 | | U-233_ther | 55.00 ± 0.54 | Np-237_inte | 54.68 ± 0.55 | | U-233_ther | 53.52 ± 37. | Np-237_inte | 53.23 ± 0.53 | | U-233_ther | $53.52 \pm 37.$ | Pu-238_ther | 54.92 ± 0.57 | | U-233_ther | 55.94 ± 0.18 | Pu-238_fast | 49.51 ± 1.8 | | U-233_fast | 55.11 ± 1.9 | Pu-239_ther | 55.00 ± 0.40 | | U-233_fast | 54.15 ± 0.85 | Pu-239_ther | 54.28 ± 2.3 | | U-233_high | 55.56 ± 0.40 | Pu-239_ther | 54.50 ± 43 . | | U-235_ther | 57.00 ± 3.0 | Pu-239_ther | 54.50 ± 43 . | | U-235_ther | 55.00 ± 0.40 | Pu-239_ther | 55.63 ± 0.05 | | U-235_ther | 55.38 ± 0.69 | Pu-239_fast | 53.70 ± 3.6 | | U-235_ther | 55.60 ± 0.20 | Pu-239_fast | 55.00 ± 0.87 | | U-235_ther | 55.30 ± 0.90 | Pu-239_fast | 53.75 ± 0.95 | | U-235_ther | 55.72 ± 1.3 | Pu-240_fast | 53.56 ± 1.2 | | U-235_ther | 55.70 ± 1.9 | Pu-240_fast | 54.15 ± 1.3 | | U-235_ther | 55.23 ± 0.13 | Pu-241_ther | 54.00 ± 1.0 | | U-235_ther | 56.54 ± 0.55 | Pu-241_ther | 53.48 ± 0.41 | | U-235_ther | 55.72 ± 1.3 | Pu-241_fast | 54.15 ± 1.3 | | U-235_ther | 55.45 ± 4.0 | Pu-242_fast | 51.73 ± 1.0 | | U-235_fast | 54.30 ± 0.90 | Pu-242_high | 53.70 ± 4.3 | | U-235_fast | 53.32 ± 0.41 | Pu-242_high | $55.40
\pm 4.5$ | | U-235_fast | 54.51 ± 0.94 | Am-241_ther | 54.54 ± 0.13 | | U-235_fast | 54.58 ± 0.43 | Am-241_fast | 56.82 ± 0.93 | | U-235_fast | 55.30 ± 0.82 | Am-241_fast | 56.82 ± 2.8 | | U-235_high | $64.80 \pm 11.$ | Am-42m_ther | 54.45 ± 0.21 | | U-235_high | 54.59 ± 0.50 | Am-243_fast | 52.91 ± 0.81 | | U-235_high | 50.60 ± 1.9 | Cm-245_ther | 51.92 ± 0.35 | | U-238_fast | 53.00 ± 1.7 | Cf-249_ther | 53.94 ± 0.08 | | U-238_high | 56.31 ± 0.70 | | | | Overall Average = 55.2 ± 0.03 s | | | | Fig. 43. Comparison of the instantaneous slope (expressed in terms of its corresponding half-life) of the delayed neutron decay curve for thermal fission of ²³⁵U as measured by Keepin. At 300 s, the instantaneous slope is 53.1 s. At 900 s, the instantaneous slope is 55.72 s, which corresponds to the value used to generate the the simulated data was truncated at 300 s and equally spaced in time to match real experimental data, the LSF code was unable to converge on all parameters. To force convergence, we found it necessary to fix the parameters for several of the short-lived groups at their correct value. However, this still did not guarantee that the remaining parameters would converge to their correct value. In particular, the decay constant for group 1 was consistently underestimated by approximately 2 to 5 %. This disparity is believed to be caused by *cross correlation* between the various parameters in the fit. That is to say, each parameter sought in the LSF is not truly independent of the other parameters in the model; the final value of each parameter is dependent, to some extent, on the final value of all of the other parameters. Hence, the truncated decay curve coupled with cross-correlation effects and potential biases in the background could possibly explain the large fluctuations in the group 1 decay constants shown in Table IV. Notwithstanding the bias in the group-1 half-life, in most reactor systems the value of the half-life of group 1 has little effect on the reactivity scale for *positive* reactivities. However, the value of the group-1 half-life has a significant impact on the negative reactivity scale since the asymptotic root of the inhour equation is bounded by the decay constant of group 1. For example, in Table V, we compare the positive and negative reactivity scales for two different delayed neutron models: 1) Keepin's 6-group model for fast fission of ²³⁵U, and 2) the equivalent 8-group model for Keepin's 6-group model derived during this study.^b In Keepin's b. To be discussed in another paper in this journal. Table V. Comparison of Positive and Negative Reactivity Scales for Two Different Delayed Neutron Models. | Period (s) | 54.5 s half-life ^a | 55.6 s half-life ^b | |------------|-------------------------------|-------------------------------| | .1000 | .9619 | .9620 | | .3000 | .9050 | .9051 | | 1.000 | .7817 | .7817 | | 3.000 | .6080 | .6080 | | 10.00 | .3908 | .3907 | | 30.00 | .2212 | .2212 | | 100.0 | .0963 | .0963 | | 300.0 | .0380 | .0380 | | 1000. | .0123 | .0123 | | -1000. | 0132 | 0132 | | -500.0 | 0275 | 0275 | | -250.0 | 0605 | 0605 | | -125.0 | 1616 | 1621 | | -110.0 | 2097 | 2115 | | -100.0 | 2699 | 2749 | | -90.00 | 4133 | 4400 | | -85.00 | 6324 | 7500 | | -82.00 | -1.0583 | -1.7333 | a. Keepin's 6-group model for fast fission of ²³⁵U. original 6-group model, the group-1 half-life is 54.5 s, whereas, in the equivalent 8-group model, the group-1 half-life is 55.6 s. As can be noted from this table, the positive reactivity scale is, for all intents and purposes, identical. However, as the asymptotic period approaches the asymptote associated with group 1, the negative reactivity scale is greatly effected by the value of the group-1 half-life. For reasons that have never been thoroughly explained in the literature, it is commonly accepted that the reactivities inferred from negative period measurements are not as accurate as positive period measure- b. Equivalent 8-group model of Keepin's 6-group model for fast fission of ²³⁵U. In the 8-group model, the group 1 half-life is specified at 55.6 s. ments. We now believe that this inaccuracy is largely attributable to the bias of the group-1 half-life from the half-life of ⁸⁷Br and, to a lesser extent, to the fact that the delayed neutrons from the next two longest-lived precursors, ¹³⁷I and ⁸⁸Br, are lumped into one group rather than being treated separately. ## **CONCLUSIONS** A literature survey of experimentally-measured delayed neutron parameters for 20 different fissionable isotopes has been performed. As a result, 245 sets of delayed neutron parameters have been identified. A comparison of the decay curves for each isotope as a function of the incident neutron energy has been performed and has shown that the results can be quite different. From this study, it is concluded that more out-of-pile and in-pile experimental work is needed to clearly identify the delayed neutron parameters that produce the most accurate reactivity scale. ## **REFERENCES** - Hansen, G. (1951), "The Inhour Equation for the Tuballoy Tamped Oralloy Sphere," Los Alamos Scientific Laboratory report LA-1278. - Hughes, D. J. et al. (1948), "Delayed Neutrons from Fission of ²³⁵U," Phys. Rev., 73, 111. - de Hoffman, F. et al. (1948), "Delayed Neutrons from ²³⁵U After Short Irradiation," Phys. Rev., 74, 1130. - Keepin, G. R. et al. (1957), "Delayed Neutrons from Fissionable Isotopes of Uranium, Plutonium, and Thorium," *Phys. Rev.*, **107**, 4. - Spriggs, G. D. and H. Doane (1993), unpublished results. - Spriggs, G. D. (1993), "In-Pile Measurement of the Decay Constants and Relative Abundances of Delayed Neutrons," *Nucl. Sci. Eng.*, **114**, 342. - Keepin, G. R. (1965), Physics of Nuclear Kinetics, Addison-Wesley, Reading, MA.